retaste rethink food resources, losses, and waste 2025

reduction composting autonomous PONCV waste business

ds c circularity challe

tractic

extra valori;

ization

nanagement sustainab

robic

ecol ecol

labelling OSS behaviour prevention packaging retains

Object kchain

consumer covid 19

olivecorn
antioxidantactivity
bioactive
compoundsfruit
diet Sea collagen

reduction diet seint eligent packaging education consumer training pilot

25-27 September Athens, Greece

Organized by

Co-organized by

Golden sponsors

Silver sponsors

Under the auspices

RETASTE:

Rethink Food Resources, Losses, and Waste

5th International Conference

Athens, September 24-27, 2025

Editors

Thrassyvoulos Manios, Hellenic Mediterranean University

Katia Lasaridi, Harokopio University

Konstantinos Abeliotis, Harokopio University

Ioannis Daliakopoulos, Hellenic Mediterranean University

Publication

Hellenic Mediterranean University, School of Agriculture, Department of Agriculture Estavromenos, 71 410 Heraklion, Greece

First published on September 24-27, 2025, in Heraklion, Greece by Hellenic Mediterranean University, School of Agriculture, Department of Agriculture.

ISBN: 978-618-87330-1-5


All rights reserved. No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, nor be otherwise circulated in any form of binding or cover, without prior permission of the publisher.

© Copyright 2025 by the Hellenic Mediterranean University, School of Agriculture, Department of Agriculture. The individual essays remain the intellectual properties of the contributors.

RETASTE 2025 was co-organized by the Hellenic Mediterranean University and Harokopio University.

RETASTE Conference Abstracts

Vol. 5 RETASTE--1030- In-person Poster Athens, September 24-27, 2025 © Author(s) 2025CC Attribution 3.0 License

Transforming Shell Waste Into Sustainable Feed Ingredients

Ivana Čabarkapa, Slađana Rakita and Jasmina Lazarević

Institute of Food Technology, Novi Sad 21000, Serbia

Abstract

Faxonius limosus (Rafinesque, 1817), commonly known as the spiny-cheek crayfish, is among the most invasive crayfish species in Europe, with the capacity to outcompete native fauna and significantly disrupt aquatic ecosystem functions (Zorić et al., 2020). The disposal of their shells composed predominantly of calcium carbonate (CaCO₃) and chitin presents a growing environmental concern, particularly in regions with aquaculture activity. Despite their abundance, these shells remain an underutilised resource and are often discarded in landfills, contributing to pollution and representing a missed opportunity for sustainable resource recovery. Recent studies have highlighted the potential of crayfish shells not only as a source of chitin but also for their content of amino acids, minerals, and bioactive compounds suitable for use in animal feed. The shells are notably rich in calcium carbonate, a mineral essential for the development and maintenance of skeletal and shell structures in animals (Topić Popović et al., 2020; Cheong and Muskhazli, 2021; Horomiš et al., 2024; Zhan et al., 2021). This study evaluated the chemical composition of crayfish shells, focusing on their amino acid, mineral, and carotenoid content. Specimens of spiny-cheek crayfish were collected from the Begeč region of the Danube River. The shells were separated from the flesh, dried, ground, and subsequently analysed. Amino acid profiling identified the presence of 17 amino acids, with essential amino acids accounting for 8.57 g/100 g and non-essential amino acids for 14.19 g/100 g of the total dry matter. Chemical analysis revealed the presence of seven elements in the shell, with calcium being the most abundant at 17.90 g/100 g dry weight. Other trace elements were present in the following order of concentration: Ca > Na > Mg > Mn > Fe > Zn > Cu. Concentrations of heavy metals such as lead (Pb), cadmium (Cd), mercury (Hg), and arsenic (As) were below detectable limits. Furthermore, the shells were found to contain the carotenoid astaxanthin at a concentration of 44.39 mg/100 g. Astaxanthin is a potent antioxidant with well-documented health benefits and is particularly valued for its pigmentation properties in aquaculture and animal feed applications. These findings indicate that crayfish shells from this section of the Danube, being rich in amino acids, calcium, essential minerals such as magnesium and zinc, and valuable carotenoids like astaxanthin, hold considerable promise as a cost-effective feed supplement. Their utilisation not only improves animal nutrition but also promotes environmental sustainability by converting biological waste into valuable resources.

Keywords: shell waste, feed, invasive crayfish

References

References: Zorić, K., Atanacković, A., Ilić, M., Csányi, B., Paunović, M., 2020 The spiny-cheek crayfish Faxonius limosus (Rafinesque, 1817) (Decapoda: Cambaridae) invades new areas in Serbian inland waters. Acta Zool. Bulg., 72(4), 623–627. Topić Popović, N.; Lorencin, V.; Strunjak-Perović, I.; Čož-Rakovac, R., 2023. Shell Waste Management and Utilization: Mitigating Organic Pollution and

Enhancing Sustainability. Applied Science, 13, 623. doi.org/10.3390/app13010623. Cheong, J.Y; Muskhazli, M., 2021. Turning leftover to treasure: An overview of astaxanthin from shrimp shell wastes. Global Perspectives on Astaxanthin: From Industrial Production to Food, Health, and Pharmaceutical Applications, 253 - 279, doi.org/10.1016/B978-0-12-823304-7.00022-2. Hromiš, N., Popović, S., Šuput, D., Pantić, J., Rakita, S., Tomičić, Z., Čabarkapa, I., 2024. Valorisation of shell waste of invasive crayfish from Danube River (Faxonius limosus): Protein extraction and characterization. Food and Feed Research, 51(2), 143-153. doi.org/10.5937/ffr0-53099 Zhan J, Lu J, Wang D., 2021. Review of shell waste reutilization to promote sustainable shellfish aquaculture. Review Aquaculture. 14: 477-488. https://doi.org/10.1111/raq.12610.

Acknowledgments: This research was supported by the Science Fund of the Republic of Serbia, Grant No. 7417: Reducing the negative impact of invasive crayfish Faxonius limosus in the Danube by smart exploitation of their meat and shells (DANUBEcare).