retaste rethink food resources, losses, and waste 2025

reduction composting autonomous PONCV waste business

ds c circularity challe

tractic

extra valori;

ization

nanagement sustainab

robic

ecol ecol

labelling OSS behaviour prevention packaging retains

Object kchain

consumer covid 19

olivecorn
antioxidantactivity
bioactive
compoundsfruit
diet Sea collagen

reduction diet seint eligent packaging education consumer training pilot

25-27 September Athens, Greece

Organized by

Co-organized by

Golden sponsors

Silver sponsors

Under the auspices

RETASTE:

Rethink Food Resources, Losses, and Waste

5th International Conference

Athens, September 24-27, 2025

Editors

Thrassyvoulos Manios, Hellenic Mediterranean University

Katia Lasaridi, Harokopio University

Konstantinos Abeliotis, Harokopio University

Ioannis Daliakopoulos, Hellenic Mediterranean University

Publication

Hellenic Mediterranean University, School of Agriculture, Department of Agriculture Estavromenos, 71 410 Heraklion, Greece

First published on September 24-27, 2025, in Heraklion, Greece by Hellenic Mediterranean University, School of Agriculture, Department of Agriculture.

ISBN: 978-618-87330-1-5

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, nor be otherwise circulated in any form of binding or cover, without prior permission of the publisher.

© Copyright 2025 by the Hellenic Mediterranean University, School of Agriculture, Department of Agriculture. The individual essays remain the intellectual properties of the contributors.

RETASTE 2025 was co-organized by the Hellenic Mediterranean University and Harokopio University.

RETASTE Conference Abstracts

Vol. 5 RETASTE--1044- In-person Poster Athens, September 24-27, 2025 © Author(s) 2025CC Attribution 3.0 License

From Waste to Resource: Crayfish Shells as Adsorbents and Biofillers in Natural Rubber

Vesna Vasić

University of Novi Sad, Faculty of Technology Novi Sad, Serbia

Abstract

Faxonius limosus is the most widespread invasive species of crustacean. It poses a threat to native crustacean species throughout Europe, which is why it is necessary to prevent its spread in river courses. The river crayfish Faxonius limosus is an autochthonous species of North America that first populated the river courses of Europe at the end of the 19th century in Poland, and to date, it has been found in more than 20 European countries. In the territory of the Republic of Serbia, it was discovered in 2002 in the Danube river (Kaldre et al., 2020, Layarević et al., 2022). One of the sustainable methods of prevention of its spreading is the hunting and use of meat and shells, following the principles of the Circular Economy. Crayfish meat has a high nutritional value, and it can be used to produce food products, while the shells, that are generated as waste, can be used as adsorbents in wastewater treatment. Biosorption is a promising, cost-effective process for the removal of heavy metals from wastewater. However, the commercial application of biosorbents has been limited because a significant amount of toxic waste is generated during adsorption process. In this study, the possibility of managing postsorbent, obtained after Zn ions removal from water, by incorporating it into rubber products was investigated. The investigation were performed with natural caoutchouc. Rubber blend containing loaded shells (LS) were prepared using commercial components commonly used in the rubber industry, such as sulfur as crosslinker, carbon black as filler, zinc oxide and stearin as vulcanization activators and isopropyl-Nphenyl-1, 4-phenylenediamine as antioxidant. The relative composition of a mixture is expressed in phr (parts per hundred rubber) units, meaning parts of non-rubbery material per hundred parts of caoutchouc. The rubber bland was prepared according to the procedure described in (Blagojev et al., 2022). Mechanical and rheological properties of rubber were tested. The tensile strength is lower (20.3MPa) compared to the sample without added LS (27 MPa). The elongation at break is higher for the sample containing 5 phr of LS (358.9%) compared to the sample without added LS (317.46%), showing that added LS influenced crosslinking and prevented vulcanization reaction to occure. Additionally, when rheological properties were tested, lower maximum torque was observed for the sample containing LS (11.62 MPa) compared to the sample without LS (13.56 MPa), confirming that added LS causes a slower vulcanization process in the rubber compound. Lower amounts of LS can be added to obtain the same results, or this product can be used for larger rubber products which are producced at lower temperatures with slower vulcanization reactions. Further research will be conducted with different amounts of LS and leaching tests will be performed.

Keywords: Faxonius limosus, invasive species, biosorbents, heavy metals, rubber production,

References

Kaldre, K., Paaver, T., Hurt, M., Gross, R., 2020. Continuing expansion of non-indigenous crayfish species in Northern Europe: first established spinycheek crayfish Faxonius limosus population in Estonia. BioInvasions Records, 9(1) p.127-132. doi: 10.3391/bir.2020.9.1.17; Lazarević, J., Čabarkapa, I., Rakita, S., Banjac, M., Tomičić, Z., Škrobot, D., Radivojević, G., Kalenjuk Pivarski, B., Tešanović, D., 2022. Invasive Crayfish Faxonius limosus: Meat Safety, Nutritional Quality and Sensory Profile. International Journal of Environmental Research and Public Health, 19(24), 1689. doi: 10.3390/ijerph192416819; Blagojev, N., Šćiban, M., Vasić, V., Kukić, D., Pavličević, J., Lubura, J., Bera, O., 2022. Use of exausted biosorbent ash as ecofriendly filler in natural rubber. Polymer International, 71(11) p. 1267-1277. doi: 10.1002/pi.6423

Acknowledgments: This research was supported by the Science Fund of Republic of Serbia, #GRANT No. 7417. "Reducing the negative impact of invasive crayfish Faxonius limosus in the Danube by smart exploitation of their meat and shells" DANUBEcare